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Summary

A stochastic model for paired comparisons of multi-attribute social stimuli

is proposed where one objective is to find the relative importance of the attri-

butes for a judge. The model can be conceived as a special strict binary util-

ity model, i.e. a BTL-model, and is related to the factorial model of Abelson

and Bradley. The scale values of the stimuli are linear combinations of func-

tions of the stimuli's attributes. The model does neither assune that the func-

tions are fixed in advance nor that different judges have the same set of func-

tions. The choice among such functions, however, is admitted only within a

finite scope. Within the framework of exponential families, maximum likelihood

estimators and tests are derived and applied to data coming from two nsychologi-

cal experiments. -
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I. Introduction

Almost all models of multi-attribute decision an6 judgment research con-

sider the (subjective) utility (judgment, resp.) U(G(i)) of an object (alterna-

tive, resp.) G(i) as a function of values Vi"), where 7i) is the aspect of
tk for G(i), k=l,...,K, and G(i) is characterized by thethe attributetkk

with fixed i E{l.... 0 N}:

U(G( i ) ) = FLal1fl(q I ) , ... ,a aK f 0K(~)]

Here, fl.....fK are the functions which represent, cognitively, the K attributes

of objects G(l),...,G(N), and al,...,aK are the weights which indicate the im-

portance of the attributes . The attributes jointly describe all

objects by different aspects. F is a real valued monotone function in each of

its arguments and specifies the composite effect of the attributes.

if the f (i))have scale values already, e.g. the test scores of intel-

ligence, experience, or neuroticism of an applicant, and if the judgment U gets

a value on a (subjective) scale, e.g. the degree of the applicant's qualifica-

tion, weights ak's can be simply estimated from models, e.g. from the model of

multiple linear regression. Clearly, in psychology these models frequently are

formulated stochastically. In these cases an error random variable should be

added to the right side of the equation (1).

In many situations, the decision between two objects G(i) and GO ) at a

time, which one of them is more attractive, more qualified, or rather more

threatened, is psychologically more meaningful and less difficult for the judge

than to assign a number on a rating scale. Bradley (1976) has given an excel-

lent overview over the stochastic methods in the area of paired comparisons.

The models being discussed in this framework can be considered as variants of

Pij = pr(G(i) is preferred to G(j )) = [U(G(i)),U(G(J))],

0. ,
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where U is the (subjective) utility and is a combination y od of a sign de-

pendent distance d and a function y from IR to [0,1] which has the properties

of a cumulative distribution function. In Bradley's (1976) paper, U(G(i)) is

most frequently represented by a single parameter 7i, while representation by

a function F is given for factorial designs. In factorial designs, the (sub-

jective) utility of an object is decomposed into contributions from the respec-

tive attributes.

In pairwise comparisons, the processing of the objects is assumed to follow

mainly one of two broad strategies. According to the first strategy, each ob-

ject G(i) is evaluated separately and independently from ill other objects.

It then gets a (subjective) overall value U(G(i)) of attractiveness, for in-

stance. G(i) then is judged to be more attractive than G(j), whenever

U(G(i)) > U(G(J)). According to the second strategy, the objects are compared

attribute-wise. In comparing G(i) and G(j", at first each attribute 7k gets

a value that indicates whether, and how much, G" ) is more or less attractive

than G(j ) with respect to this individual attribute. G(i) then is preferred

to G(j  if the overall value of all attribute-wise comparisons is assumed to

favour object G(".

If it is further assumed that, in the first strategy, the overall value

U(Gi ) is formed by summing up its corresponding ittribute values or, in

the second strategy, by summing up the attribute-wise comparisons, then the

processing of the objects for a decision can be represented by an additive dif-

ference model (Tversky, 1969):

G(i) > G j) iff kl  M )] O,
k k k k=l

wher ~k(s) ~ ad a wel as are real valued functions, k1l,...,K.

where~~~~4 4(6 _06) an 
-ka 
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Clearly, the additive difference model represents the second strategy.

The first trategy, if represented by an additive model, is a special case of

the additive difference model where all the difference functions have the form

@k6) = ak6. In this special case, the two models coincide, but not necessarily

the two processing strategies.

If the fk(i)) have scale values while the judgments result from paired

comparisons, Srinivasan and Shocker (1973) have proposed an estimation proce-

dure for the weights al ... ,aK from a system of linear inequalities. This pro-

cedure is related to the approach of Krantz et al. (1971, chap. 9) for whom

the main problem is to find necessary and sufficient conditions for the exist-

ence of a specific form F that indicates the specific integration of the attri-

butes, if only a finite set of data coming from paired comparisons is available.

The first answer is clear: It is necessary and sufficient that scale functions

alfl ... aKfK exist such that U(G( i)) > U(G(j )) implies that G(i) is preferred

to G(j ) for all i < j. Due to the stochastic nature of many evaluation pro-

cesses, fully consistent behavior of the judges cannot be expected. Neverthe-

less it seems to make sense to estimate the scale functions or parts of them,

i.e. the a, ... ,aK so that only as few as possible of the implications above

are wrong, especially if a particular form of For some special forms of F

and fk' k=l,...,K, are assumed to be valid.

However, if judgments are made with respect to paired comparisons of social

objects, as to the attractiveness between two particular persons or holiday

places, respectively, models for the estimation of importances a,,... aK should

satisfy the following two conditions.

[1] It cannot be assumed that the attributes of the objects have already fixed

functions f19""'fK being available for the judge.
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Under this condition, the approach of Srinivasan and Shocker (1973) is

not appropriate. Basically, thp attributes could have got such functions from

the judges, as it is assumed in several approaches (e.g. Gensch & Recker, 1979).

However, this procedure requires two conflicting judgment situations within

the same judge:

(a) the decision between two objects (stimuli) G(i) and G(j ) at a time, for

instance, two holiday places, and

(b) the decision for scale values for each aspect of each respective attribute,

e.g. the attractiveness of the hotels.

It is intuitively clear that these two judgment situations will mutually

influence each other and thus will inflate the validity of the model.

[2] It cannot be assumed that different judges decide on the basis of the

same set of functions fl..... fK for the attributes 7l,9 .... K of the objects.

The aspects within the attributes often are preferred quite differently

by different judges. For instance, one sea-side resort will be preferred by

one judge due tc its much frequented beaches while the other resort will be

prefrred by another judge due to its tranquil beaches. Averaging over judges

would lead to results which represent none of the judges. Thus an analysis of

the judgments of the individual judge should be performed.

The objective of the present paper is to propose a stochastic model for

the decision process as well as for the estimation of the weights ak of the

attributes 7k' k=l,...,K. Its applicability will be demonstrated with pair-

ed comparisons in two psychological experiments. The final form of the model

satisfies both conditions [1] and [2].

In the second section, normal equations for the maximum likelihood estima-

tors, and a necessary and sufficient condition for their existence, will be

derived as well as tests for hypotheses with respect to the ak s. In the third
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section, the results of two experiments will be analysed by the proposed pro-

cedures. The results corroborate the importance of condition [2].

2. The Stochastic Model

2.1. Presentation of the Model in its Preliminary Form and Likelihood-Equations

Let G( ) 
.. ,G(N) be N stimuli (objects) which can be described by K attri-

butes 7,k E{l, 2,....mk} with fixed mk, k=l,...,K. Thus they may be represent-

ed by

G(n) (n) (n)) KG 1 .... K ), n =  1, ....,N, N m mk• (2)

k=l

Each of the N(N-l)/2 pairs of stimuli are presented in a random succession

to a subject (judge) who has to decide in each case which one of the two stimuli

is preferred to the other one. These preferences are assumed to be given in-

dependently. Thus we have a full design in a double sense: All objects which

can be constructed from the attributes and all pairs of objects are at hand.

Let us further assume that a judge prefers object GM to G(j ) with prob-

ability

pr(G( i) is preferred to G(J)): = pij(a): =

= (l+exp{-( F akM k X akMkf)) k (3)
k=l k=l

1 < i < j < N, where a = (al, ..., aK) are K unknown real parameters,

M = f 0)), = l,...,N, k = 1,...,K, and fl ... 'fK are (for a while) fix-

ed known real valued functions.

*It
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It is easy to see that
K

expf ( akMk(i)-Mk(j)]

pij(a) k=l (3')
- K

l+exp{ I ak[M -MJ)3]}
k=lkk k

K

expf I akM(i))
k=l

K K •
exp{ akMi)}I+exp{ I akMk)I

kll k=l

K
K exp{akM(i}

k=l
K , K
n exp{a M()}+ R exp{a MmJ)}

k=l k k=l kk

and that

logit pij(a) := log p.(a) =  a  )-M j ) '  I i < j N.
13 - , k[Mk~iT

Ij - k 1

Thus the model may be considered as a strict binary utility model (Luce

& Suppes, 1965), as a special version of the Bradley-Terry-model (1952) (cf. Zermelo,

1929), or as a particular regression model (cf. Grizzle, Starmer & Koch, 1969). If the

fl ... fK can vary only with respect to the constraintI'' K
Yexpja f (P (k)1 = (or I f (P )= 0), k = 1..Kk kiL<iN k i')11i<N}k k

we get the factorial model of Abelson and Bradley (1954)(cf. Bradley & El-Helbawy

1976). In this model, we can fix the al...,aK to nonzero real numbers (e.g.

ak = 1, k = 1,...,K) or put other constraints on fl ... fK"

Let the outcomes be random variables Xij E{0,1}, where Xij = 1(0) has the

meaning that G(i) is preferrred to Glj' (G(J" is preferred to G(i)), 1 < i < j

< N. Thus the likelihood function is given by

s,~~ -. 2,c
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x. . l-xij
pr(Xijx.j ,l<i<j<N) : i P.i(a) -Pij.(a)) 13

K ( i ) _M(j)

k=l i<j
K 0i )O

E (l+exp{ Y ak[M mk k
i<j k=l

Xij E{O,1I, I < i < j _ N. (4)

Since the likelihood function is a continuous function from IRK to [0,1], it has

a global maximum, at least asymptotically at ak = +- or ak = - for some of

the ak' k = l,...,K. Moreover, since the likelihood function is differentiable,

the partial derivations have to be zero for a maximum likelihood estimator from
K

It can be seen immediately that the following random vector Z is a suffi-

cient statistic for a EF K

Z R(Z1 .... ZK) ,

(5)
where Zk = Z Xi[Mbi)-M J)],'  k = 1

i<j

Moreover, the distributions of Z constitute a K-parametric exponential

family, since for every fixed aEIRK

K
pr(Z=z) = exp{ I akzk+c(a)+d(z)}, z = (zl ... ,zK) E , (6)

k=l

where ;, c(a) and d(z) depend on fl' ... 'fK in an obvious manner.

The parametrization is identifiable if and only if for every k C{l ,... ,KJ,

Mk > 2 and the values fk(1 ),'..,fk(mk) are not all identical. Under this condi-

tion, an unique maximum likelihood estimator a := (al .... IaK) E IRK for a exists

if the following system of equations has a solution:

[ xi-Pi(a)][M'Mi) -M = 0, k = 1,...,K, (7)i <j

which then is the unique solution of (7) and equals to i. *1

----....
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System (7) constitutes a system of normal equations which result from

putting all partial derivations of the likelihood function (4) equal to zero

and some additional standard analysis. That (7) in fact leads to unique maxi-

mum likelihood estimators can be seen more quickly by realizing that E a(z(Zk)

Sp. ij(a)[M(')-M J)], k = 1,..., K, and thus a solution i(z) of (7) satisfies
l<3

the canonical conditions for exponential families:

Ej(z)(Zk) = Zk' k = 1,...,K, (8)

(cf. Bickel & Doksum, 1977, p. 106).

2.2. Existence of Real Maximum Likelihood Estimators

KNow, it may happen that a maximum likelihood estimator a CEK does L

exist. For example, consider the case x.i = l(O) if M1)( > (<) MiJ) for

i , j. In this instance, a judge decides (lexicographically) with respe
the first attribute only, provided that MMi) # M j ) The likelihood func...n.

1 1

then, increases with aI for any fixed a2 , ... aK EIR. For a fixed pair (i,j)

with i < j, three cases can be distinguished.

a) Mi) : The associated factor in the likelihood function is pij(a),

which is increasing in a1,

(b i) < MW: The factor is 1 - pij(a), which is increasing in a1 , and1 113

(c) M(i) = MJ):' The factor is constant in a1 .

Thus, if we want to speak about a maximum likelihood estimator in this case,

the first component has to be

To handle this problem in general, let us state the following.

Definition. A set {k1,... ,kL} c {il,... ,K} is called a determining set (of in-

dices of attributes), if there are nonzero real numbers al....,9aL, such that

for all i < I:

V*)W%* M fi
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L L
Mi k 11j implies x. . (O).

z~l k k

A determining set is called minimal if no proper determining subset exists,

and it is called maximal, if it is not a proper subset of a determining set.

Let us now state three properties of those determining sets:

First, if a determining set exists then there is a unique minimal and a

unique maximal one. The existence is obvious. To demonstrate the uniqueness,

let us consider two different minimal determining sets, say, 3" = {k I ... ,kL}

and = {k, ,... 'k[. " If k c X or c% , minimality is contradicted. If

t \ 0 0 and \X( 0, a pair (i,j) of objects can be found (full design) withL
r..(i)L L() nd?, MV)Mj]<O

M(i) kj ) for kEx n X , and with z a[Ml('-M '] 0 and z[ivJ -mm] < 0,
Z=l z zz-l

so that xij = 1 and xij = 0, a contradiction. The proof for maximal sets is the same.

Secondly, there is a (unique) hierarchy of those minimal determining sets.

For if kI is the unique minimal determining set, let us
1L (1)M) M(J)

eliminate all pairs (i,j) with Z EM 1 0. The remaining pairs include,
Z=l kM k

z z

what can be considered as a full design from the attributes not from \'l with

I mk observations per pair: the set of all pairs (i,j) with Mi) M j ) for
kE(

every kE Y] . Clearly, again a unique minimal determining set" 2= k )

may exist with ' 2 fl~ # 0 and

L2

7 '10)MM M(B)] = 0 and Z a (2)EM  k kM )] > (<c) 0
Z:: k M-k 0 =1 k (2-k(

im Aij : (0).

This process may be continued until the last minimal determining set p has

been found.
P

Thirdly, il,2,...Kf \ U ,'r is the non determining remainderdenoted
r-I

P
stochastic remainder, and L r is the unique maximal determining set.

r=l
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Both sets may be empty.
P

Let U r = 'Y'121" " q so that I }" , = ....+
r=l I

fL +L and so on. It is possible to select 3l.. 'cLl ',aL+l' .... aL +L '.... Oq%

where the , from the next following minimal determining set are smaller than

those from the preceding one and where E jM(i)-M(j)]> (<) 0 implies x
Yk ' kij

- l(O). It is maximal since, otherwise, a further minimal determining set

would have been found.

The Main Result. The maximum likelihood estimators aV .... 'aK exist (as real

numbers) if and only if there is no determining set.

Proof. If there is a determining set, then there is a minimal one, say,

( = kl ... kL} with a, ... L* The part of the likelihood function (4) associ-
L ,_ ,

ated with pairs (i,j) with i < j and (*): Z [M(')-M'i)] 0, can get close
£= k k

to 1, but cnly if the lak I are sufficiently large, z l,...,L. For instance,

letk = l...L, and ak9 k4 r , be arbitrary real numbers. Then,

x. . -x-
,)pi (a) iJ(l-pij(a)) 1, - 1 and the product is unequal to 1 for

every a EIR K The remainder of the likelihood function is not affected by a

change of

To prove the opposite direction, let us begin with the assumption of non-
existence of %E Let (aln) (n)

a 'aL+l ..., K), n = 1,2,..., with

n - , : l....L, be a sequence which tends to the location of the

-Kmaximum, which exists at least in A . In this case for i < j9
L

(**): lim X a(n)[M('i)-M(i)] = ' (- ) implies xij  1(0),
n- £1 9 z 2 z1
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since, otherwise, one factor of the likelihood function tends to zero.
There exists a kE{l,...,L) such t t lim a(n)/a (n) R , say,

~L
: 1....L. Then the first equation in is implied by [M(i)-Mj)

(<) 0, i.e., the subset lu { Z0=. is a determining set, and

therefore the proof is completed.

If there is a determining set, then there is a maximal one: {y] ... yq},

say. In this case the ak, k{ y ..... ), may be estimated from the paired

comparisons at those (i,j) with [M(i)-M(j)]= 0, i.e., inar_M 0 i~e, ina reduced
zY; 'Y

model. The ak' k4 {yl .%,yq}, which are found in this way, together with

*z -yloZ .... 9y q}, may be interpreted as a solution of the problem where

E, E{Yl..... yq} are taken from the maximal determining set. In this way,

the model is also suitable if a judge at first decides lexicographically with

respect to certain attributes, and only in cases where no conclusion can be

made in this way, decides in a non-deterministic manner.

2.3. Remarks.

(a) Obviously, the form of a solution of system (7) depends heavily on the

form of the given f,,""'fK" It cannot be given explicitly in general but has

to be evaluated in every concrete situation numerically.

(b) If not all N(N-I)/2 pairs of stimuli but only a fixed subset of them are

presented to the subject and judged by her or him similar results can be derived.

The only thing that changes in the formulas is that all sums and products in

(4), (5), and (7) have to be restricted to this subset. However, the identifi-

ability of the parametrization as well as the results concerning the existence

of aER K depend now additionaly on this subset.

(c) If the N(N-l)/2 judgments are collected independently from R subjects who

can be assumed to judge according to (3) with a common a, or are collected from

**' 'f~ .- C4 ~ ,4!-~
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one subject who is assumed to give her of his judgments independently R times,

respectively, our results derived so far hold analogously. One only has to re-

place the Xi 's and xii 's throughout by the arithmetic means of the correspond-

ing responses and to pay attention to the fact that then (4) is no longer the

likelihood function, but now its R-th root. Especially, the model can be examin-

ed with generalized (maximum) likelihood ratio tests, in two directions, which

2can be established by use of the well known x -approximation. The first tests

the hypothesis H: "a1 =.. K=O" (pure randomness) versus K: "model (3)", and

significance supports our model. The second may test the hypothesis H': "model

(3)" versus K': "Bradley-Terry model (1952)", and non-significance then sup-

ports our model. Of course, one should clearly distinguish between the mean-

ing of "supports" in the two tests due to the well known unsyrmmetry in the

theory of testing hypotheses. It should be pointed out also that in the case

of R = 1, both tests are not at hand and even the parameters in the Bradley-

Terry model (1952) are then mostly not estimable within the maximum likelihood

approach.

2.4. The Final Form of the Model

Instead of proceeding along the lines as indicated in Remark (c), we pre-

fer to generalize our model, admitting a more individual behavior of the single

subject. By this we do not only mean that parameters a may now differ from sub-

ject to subject but also that, instead of having f := (fl' .... fK) fixed known,

we assume now that only fkE ak holds, where ak is a given finite set of real-

valued functions, k = l,...,K. Maximum likelihood estimates f := K)

and i for a single person are determined now in the following way: For every

fixed f with fkE J k, k = l,...,K, a solution of (7) has to be found and, to-

gether with f, to be inserted into the likelihood function (4). The largest
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value of (4) then determines the maximum likelihood estimates f and a.

Now let us assume that there is a determining set y with respect to a

special choice fkE Ok' k = l,...,K. To give meaningful maximum likelihood

estimates in this case we propose the following way. Let us define the maxi-

mal determining set X max = {y1 .... , I} in this case as to be the largest pos-

sible determining set under all possible choices of fkE k' k zl ...,K. Before

we prove the existence and uniqueness of k max' which requires a comparison

of all maximal determining sets associated with f -- (fl .... fK)' fkEa k'

k = ],...,K, it should be pointed out (as will be demonstrated later in Section 3)

that in practice this work needs not to be done for all sets of data.

To prove that Xmax exists uniquely, let us consider two different candidates

max : fyI,....y } and Xmax = {yi'..., q }, say. Let us assume that max (max )

belongs to a choice gk(k ) E k' k l ,...,K. If 5max C Rmax or maxc7 max'

we can discard the smaller one. If Ymax\%max 0 0 and kmax\ kmax 0, we

can find a pair (i,j) of objects (full design) with rkM = () for

k E kmax n max, and with

q p[gyp( (i)) -g pi())

M (j))] > 0 and [ M ((i))_- (, !j))] O,

p=l 'P 'Y p Y p p=l P Yp Yp Yp p

so that both x.. = 1 and xij = 0 must hold for this pair, which forms a contra-

diction. Thereby p( R, p = l,...,q, and pEIR, p l,.... q, are constants

as described in the third property of the determining sets.

So let X max = {Y"'SYq) be the maximal determining set, being construct-

ed from all possible choices of fkE 3 k' where gk, k = 1,...,K, and a, p = ,

...,q are the associated choicesof functions and constants as, given above. In

this case it makes sense to put f g and Syp , p = l,...,q, since
Y gyp Y p •

for this choice of f , p - l,...,q, all factors of the likelihood function
Yp
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which are related to comparisons of objects (ij) associdted with deterministic.

deL.kiolis, i.e. with i [M i- J ]  0, tend to 1 if a, -, and
a a:l p = ,.. ,q pkan

a la /,Ip , r = 1k...,q. k and ak9 k max' may now be estimated

from all comparisons (i ,j) with [ [M(i)-M(j)] = 0. These estimations are
£=l y 9  Y

unaffected by fk and ak, k E Kmax.

It is possible to think about infinite sets 3 k' which in general will

lead to a better fit of the model to real data. One may takeS(Ok) n)

i {fk k E Rl with a sufficiently differentiable parametrization,

and try to estimate not only the weights a but also the parameters ek, k = 1,

...,K, at a time. We have found two negative effects from this way. First,

the distribution of the total observation (Xijl<i<j<N) or of the statistic Z

does not longer form an exponential family in general. Secondly, the numerical

evaluations become much more complicated (which is in part an effect of the

first point). As the applications will reveal, finite ki s are not a very

severe limitation.

In this context, the relation between our model and the model of Abelson

and Bradley (1954) can be seen more clearly though both objections do not hold

for this model. If we put

exp{a = 1 (or M('i) =, a
k k (, a k U),

k = ],...,K, as the single restriction to the ak and fk' k = 1,...,K, we arrive

at the model of Abelson and Bradley (1954). Generally, the 3 k's cannot be assum-

ed to be finite, except for the instances where 1lik _ 2, kE{I,...,K}. In these

instances, the fk s may be fixed (3k = fk ) since the aks, k = 1,...,K, are

still unconfined. For mk > 3 this is no longer possible since, by letting vary

ak, one cannot change, e.g., the relation between the differences of the a M(i)

k k

AV!
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i = 1,... ,N, which are unrestricted in the model of Abelson and Bradley (1954).

In our model, however, there is only a finite number of possible relations

according to the finite a k s. If mk < 2, k = l.... ,K, each of the two models

is evenly transformable into the other one.

Since in our model, pi(a) depends on the M(n) k = 1,...,K, n = ],...k

only by their differences M(i) - (j), i < j, k = 1,...,K, the restriction de-k k, ,k= . Kthretitod-

scribed above can be reached by adding a constant bk to each M1(n)
, n = 1,...,N,k k

k = 1,...,K.

In their (1976) paper, Bradley and El-Helbawy suggested an algorithm to

maximize the likelihood function even for factorial designs as in the Abelson-

Bradley model. El-Helbawy and Bradley (1977) proved the convergence of this

algorithm, provided the assumption of Ford (1957) holds:

"In every possible partition of the N objects into two nonempty

subsets, some objects in the second set has been preferred at

least once to some object in the first set." (cf. Zermelo, 1929).

It is clear that the nonexistence of a determining set follows from the Ford

assumption, but the converse is not true: In the first psychological experi-

ment, to be discussed in Section 3, in only one of 36 cases a determining set

exists (and can be handled by our model), but in 28 of the 36 cases the Ford

assumption does not hold.

2.5. A Test for the Model.

As long as the sizes of the sets 'l ' k are not too large, the fol-

lowing single tests, for every fixed f, can be combined to a simultaneous test

for H: "a I  =aK=O". Its p-value can be bounded from above in the usual man-

ner with the help of the single test's p-values and Bonferroni's inequality.

Thus, let f be fixed for a moment and let us look for a test for H versus the

J*
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general alternative that H is not true. For every k < {l...,K}, for the test-

ing problem Hk: "ak=O" versus Kk: "ak O" there exists an UMPU-test who rejects

Hk if Zk falls outside of an interval. But the boundaries of the interval de-

pend not only on the level but also on the values of Zl,...,Zk.l,Zk+1,...,ZK

(cf. Lehmann (1959) p.134). Thus in view of the combinatorial difficulties

arising from f, these tests are practically not performable in general.

Alternatively, let us propose the following asymptotic tests for H (instead

of Hk) versus Kk, k = 1,..., K. The single tests hereby are based on statistics

[1- 3 E(1)-Mj](/ 1<3 )Mj 12)11 9i<j i<j

and acceptance regions D_-l (c/2K),o- (l-Ia/2K)], k = 1,...,K, where i denotes the

standard normal cumulative distribution function and a an upper bound for the

level of the corresponding test. A sufficient condition for the asymptotic nor-

mality of the test statistics in a sequence of models (2) and (3) (triangular

array) is that for large N the following terms tend to 0:

max [Mr)_M ) 2/ I [M k = !,...,K. (10)

r zs i<j

This since under H, the Xij, 1 < i < j < N, are independently identically dis-

tributed Bernoulli-variables with parameter 1/2, and therefore the conditions

are equivalent to the Lindeberg condition (cf. Feller (1971) p. 264(f)).

To reduce the loss of power induced by the use of Bonferroni's inequality,

other testing procedures are thinkable, e.g. those which are based on the asymp-

totic joint normality of the K statistics given in (9).

3. Applications to Psychological Experiments,

The model was applied to data from two psychological experiments, each

generating a 3 x 3 x 2 - design.

- ~ -
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The objects (stimuli) of the first experiment were schematic faces with

K = 3 attributes: "Mouth" 7 p {I 1(-.) ,2(-) ,3(--) }, "Hair" T 2 E (1 (bald),

2(short),3(full)}, and "Eyes" E3 f{l(- -),2(--)}, see Fig. 1.

Please insert Fig. 1 here.

Each pair of the N = 18 faces has been presented to the judge by project-

ing the two corresponding slides onto a screen in a random ordering. The judge

decided spontaneously, which one of the two faces looked more likable, by cross-

ing against one of two little boxes. In this manner N(N-l)/2 = 153 decisions

of the judge have been recorded. 36 subjects participated in groups of 4 in

this experiment.

To get the numerical analysis manageable, we restrict ourselves to func-

tions fl'f 2,f3 which lead to equidistant scales. With other words, for every k,

{M i) = f ( i))Iil, N} is a set of equidistant real numbers. Under this

restriction, the choice of the admissible functions f1,f2,f3 can be restricted

to the following classes without further loss of generality (in a reasonable

sense):

= {p,q,r} where p(l) = 1, p(2) = 2, p(3) = 3

q(l) = 2, q(2) = 1, q(3) = 3 ()

and r(l) = 1, r(2) = 3, r(3) = 2,

3 2 = ;yI and ;3= fs} where s(1) = 1, s(2) = 3.

For each fixed kE{1,2,3}, the justification is as follows.

In the model (2), (31, the MI()-values appear only in terms of differences.k

Thus their values can be shifted and their smallest value can be set equal to

1. A y-fold of the differences can be compensated in the parameters ak by a

change to ak/Y. Thus the largest value of the M(i), i = 1.... ,N, can be set

k k

I
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arbitrarily to a value greater tharn I. Here, we set It equal to 3. Now we

arrive at scales 1M(i)Jl iN = {l,?,31, for k = 1,2, and {MS1 )Il<i<N} = {,31.

Thus, f and f can be only permutations of (1,2,3). Analogously, for f3 there

are two possibilities. Finally, a complete reverse of the values of a func-

tion fk• e.g. (1,3,2) to (3,1,2), simply changes the signs of all differences

of the M(i), 1 < i < N, and therefore can be compensated by a change of the
k - -

sign of ak. The estimator i has to be evaluated from computations for all triples

(f1,f2 9f3). As the above considerations have shown, computations for 9 combina-

tions do suffice.

The sole loss of generality results from the equidistantness of the num-

bers MM, 1 < i < N, in other words, from setting the middle value of these

numbers equal to 2. If this value would be replaced by a parameter V E [1,3], say,

this would lead to full generality and would reveal a direct parallelism to

the model of Abelson and Bradley (1954). However, two more parameters, one

for the first and one for the second attribute, would be necessary in this in-

stance.

There are two possibilities to handle a lexicographic behavior of subjects.

The first is to check the data for all possible combinations of fk' k = 1,...,K,

whether there is a determining set. This is rather laborious. The second is

just to check whether the numerical procedure converges in the right way for all

combinations of fk' k = 1,...,K. The results are given in Table 1.

Please insert Table 1 here

The estimated functions f and f2 obviously confirm our condition [2]. A

comparison of the i's among subjects having the same functions 1 and f2 and

signs in the ak'S demonstrates additional individual behavior. Since f3  s

holds for each subject, f3 is not listed in the table.
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A negative sign of an ak means that the subject shows the opposite prefer-

ence fk f = hofk with h(l) = 3, h(2) = 2, h(3) = 1) to fk within the attri-

bute 7k, k = 1,2,3.

The absolute values of the parameters al,a 2 ,a 3 of a subject indicate which

relative importance the three attributes exert on the decision process. This

can he. seen more clearly by considering the case where lak1 > la~i,

0 M(i ) - M j ) = -(M(i)-M J)), and M(i) = M j ) otherwise,

k k z k p p

z,k,pE{l,...,K}, z # p # k, and I < i <j < N.

It is easy to see now that here the answer to the question whether pij is great-

er or less than 1/2 depends only on the sign of ak[M i)-M J)].

A negative sign of an &k and the absolute values of the ala 2 ,a 3 are thus

to be interpreted analogously.

The data of subject 7 reflect a deterministic behavior with respect to 7P,

and neglect of "2 and r3 as long as the two faces in a pair differ with re-

spect to 74" The order of preference for values in %l is 3(.) more likable

than the other two aspects, and 2(-) more likable than l(-). Thus, if we set

f, = p,{l} is a determining set. Clearly, it is a minimal one and further con-

siderations show that it is also the maximal one for every choice of f2 " Since

for f, = p and a1 - - , all factors of the likelihood function tend to 1 which

are associated with comparisons of faces differing in their type of mouth, it

makes sense to have fl = p and a I f2 as well as &2,S3 have been comput-

ed from all comparisons of faces which have the same type of mouth.

For subject 17, both q and r are maximum likelihood estimates for f2, and

the sign of a2 depends on the choice among them. This result reflects a re-

jectla of 7 2 = 2, the short hair, and indifference between the two aspects

3(full hair) and l(bald hair). Similarly, for subject 19, both p and q are, !V
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maximum likelihood estimates for f2, leading to the interpretation that 72

- 3(full hair) is most likable, and no clear preference to either 2(short) or

1(bald) is made.

Column "Subj." gives the subjective rank order of the importance of the

attributes for each subject. They have been requested in interviews follow-

ing the experiment. For instance, (1,3,2) is to be understood that the sub-

ject rated 2 as most and 7l as least important for her or his judgments.

If a subject rated all attributes as equally important this is denoted by a

As a measure of tne difference between the subjective rank order of a sub-

ject and her or his estimated rank order (based on Jil 1 ,&21,1a31),let us take

the minimum number of inversions or transpositions needed to get from one rank

order to the other one. For instance, from (1,2,3) to (3,1,2) 2 inversions

and from (3,1,2) to (1,3,2) 3 inversions are necessary. There are 9 subjects

without any inversion, 14 subjects with one, 4 subjects with two, and 3 sub-

jects with three inversions, giving a total of 30 subjects who could give a

subjective rank order. Among those subjects who could give a subjective rank

order, a x2-test with 3 df can be performed for the hypothesis of "Randomness"

versus the alternative that less inversions are more likely. The p-value for

these 30 subjects is p = 0.0268.

The last column gives the upper bounds for the p-values of the proposed

test ("Randomness" versus "Model") for each subject. Each value, by

Bonferroni's inequality, is calculated as the 7-fold of the minimum of the

p-values of the single tests, which are taken from Owen (1962). It should be

noted that for only 8 of the 36 subjects (16,19,24,27,28,33,34,36) Bradley-Terry-

estimates ;i, i = l,...,N, exist. That means that in most cases, there are

partitions of the set of objects in two nonempty subsets where no object in
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the second set is preferred to any object from the first set and that the

second set contains more than one object (one of the i's may be zero,

i E{I,...,N}).

In the second experiment, two variants were realized. The objects in both

conditions were descriptions of ten year old boys showing learning difficulties,

with K = 3 attributes:

(a) "Description of the student by his teacher" 7l E {1 (he frequently dis-

turbs the lessons), 2(he uptakes slowly), 3(he is afraid of failing)};"Assist-

ance with the homework" 5 2E{l(by day nurses), 2(by his siblings), 3(by his

mother)}; "HAWIK-intelligence score (a German version of the WISC)"

E flI(103),2(91).

(b) In this condition, 72 was replaced by 4 "EEG-diagnosis of a neurologist"

E {l(mild lability of the brain functions), 2(mild nervousness), 3(mild vegeta-

tive disorder)}. A total of 28 subjects (teachers and graduate students in ed-

ucation) participated individually in this experiment, 12 in condition (a), and

16 in condition (b). The pairs of objects were printed in a booklet in a ran-

dom ordering. The subjects decided who of the two students in a pair would

need more urgently support by a special education.

Due to its small diagnosticity, V'4 was expected to be cognized as the

least important attribute in condition (b). Since the importance of the at-

tributes l,72'43 , as conditions for learning disabilities, is viewed con-

troversially among the experts, individual preferences were expected. The re-

sults are given in Table 2.

Please insert Table 2 here.

<4
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The suggested procedure for the numerical analysis of the estimates fk and

ak in the first experiment was also applied to the judgments in the second ex-

perimen t. As Tdble 2 shows, 4 subjects decide lexicographically with

respect to ' and further two subjects decide strictly lexicographically

with respect to all three attributes. Thus, more frequently than in the first

experiment, determining sets can be identified in the second experiment. The

results again corroborate the justification of condition [2], that is to say,

there are more different than common strategies among the subjects.

The expectation concerning the relative small importance of 74 in condi-

tion (b) was tested by assigning ranks to the estimated weightsiak1 for each

subject. The squares of the sums of ranks for each k were jointly transformed

2_into the Friedman-statistic, which is x -distributed with 2 df under the null

hypothesis: "Equal importance of the attributes". The resulting x = 13.625

with a p-value p < 0.005 confirms our expectation.

Numerical calculations

The numerical calculations have been performed on the HB 66/80 at the

University of Mainz. The solutions of the system of equations (7) are based

on a procedure of Werner (1979), which converges somewhat faster than the

classical, and also suitable, Newton-Raphson procedure.

4. Discussion and Summary

The present paper proposed a model for paired comparisons of multiattri-

bute social stimuli which can be considered as a stochastic special case of

the additive difference model (Tversky, 1969), and has relations to some other

models, for instance to the BTL-model (Luce, 1959). It satisfies the cc,
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(liven in the introduction, that scale values for the attribtes are not avail-

able, and that each judge should be considered individually, i.e. aggregating

across judges would misrepresent the individual judgment strategies.

As the results of the two experiments show, judges should in fact be re-

garded individually. Our condition [2] is especially important if the aspects

of the attributes have no natural order. (We prefer to speak of attributes in-

stead of features since all the schematic faces having been evaluated in the

first experiment, for instance, have hair. On the other hand, if the schematic

faces could be separated into two classes whose members either have or have no

hair, the term feature would be more appropriate.)

Intuitively, representing the processing of schematic faces by an additive

model seems to be not conclusive. Recent approaches on processing information

in social perception assume a partition of the set of objects into classes

which are best represented by prototypes (cf. Mervis & Rosch, 1981). If the

juc~ments U(G i ) o, he schematic faces of the first experiment would have been

guided by such a processing strategy, classes of more or less likable schematic

facei should have led to clear preferences between the members of different

classes and to indifferences between the members within classes. However, the

empirical evidence does not support such interpretation. It should be quoted

that Mervis and Rosch (1981) found in the present literature

" onsiderable disagreement as to whether faces should be .onsidered

special holistically perceived objects" (p. 105).

First, the judgment situation of requesting paired comparisons should be

taken into account since it favours a comparison of the objects by their common

attributes (e.g. Tversky & Krantz, 1969). Even if a task consists of assiqn-

ing schematic faces to one of two selected classes of faces which are repre-

sented by some typical members, the similarity between the schematic faces

and the classes was well represented by a weighting feature model (Reed, 1972).

44 -r
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That means, a process of abstraction requires the attention mainly to the in-

dividual attributes that best discriminate between the two classes.

Secondly, when having subjects judge pairs of schematic faces coming from

sets in which the aspects for some attributes differ only quantitatively, for

instance when the eyes differ only in their distance, then the conditions of

transitivity and independence are less likely satisfied than in our first experi-

ment with its qualitative material. Additionally, subjective reports on the

judgment strategies revealed more attention to the individual attributes than

under the conditions where the schematic faces had only one or no attribute with

qualitative aspects (Mattenklott, 1979). Qualitative aspects seem to increase

the independence of the individual attributes and thus to increase their im-

portance when processing schematic faces into impressions of likability.

Thirdly, for nearly all of the subjects, the judgments from the two ex-

periments did not deviate severely from the necessary independence conditions.

Rather, the deviations can be explained by the stochastic component of the

evaluation process. This result neither suggests another simple polynomial nor

a classification of the schematic faces into likable and unlikable objects as

a SUitable model.

The arguments for & processing of objects with special respect to their

attributes do not intend tochallenge a coding of information that can be de-

scribed as a construction of classes which are represented by prototypes. How-

ever, as our arguments should demonstrate, task characteristics as well as the

type of objects require a process of abstraction which favours the integration

of schematic faces ty its attributes.

Obviously, the process of abstraction should be more important when the

attributes describing a student with learning difficulties should be integrat-

ed to a judgment of how severe his learning disability is. This process of

'AlI



25

abstraction together with the easily separated attributes of verbal information

should lead more distinctly to an attribute-based judgment. The results of the

second experiment corroborated this conjecture since 6 of 28 subjects decided

strictly lexicographically with respect to at least one attribute. The results

likewise reflected the minor importance of the attribute ,,4 as supposed in the

second variant of the second experiment. This result would have been less

probable if the subjects had processed the objects configurally.

On the other hand, empirical evidence for the attribute-based judgments

do not allow strict implications on the particular integration rule F. Differ-

ent integration rules are compatible with our model, for instance a weighted

attribute-wise comparison, an additive combination of the attributes that leads

to a separate evaluation of the respective objects, or a lexicographic rule as

performed by some of the subjects, especially in the second experiment. Follow-

ing the line of identifying the particular integration rule F, an axiomatic

analysis in the sense of Krantz et al. (1971) could have been performed. How-

ever, this approach contains the problem of how to handle the error (stochastic

remainder).

Acknowledgement. The authors are grateful to Professor P. H. Schonemann
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TABLE

Estimates, subjektive rank orders, and p-values of 36 subjects

from the first experimen

Subject ('?2) 1 a2 a 3 Subj. Test

1 (p,p) 8.7230 2.7481 1.2790 (3,1,2) 5.60.10 -21

2 (p,p) 5.5402 1.8673 1.7035 (2,1,3) 1.59 10-18

3 (p,q) 4.2700 1.5842 1.5627 (1,3,2) 5.59.1 1 7

4 (p,q) 2.8581 1.1590 1.6735 (3,1,2) 9.54-10 - 1 3

5 (p,p) 3.2006 1.1475 1.0484 (3,1,2) 3.13.10 - 16

6 (q,p) 1.8752 1.0757 0.6223 3,2,1) 4.2210-12

7 (p,r) co 0.8339 -0.7444 (3,1,2) 5.60. 10-21

8 (q,p) 2.2223 0.7462 1.5745 (2,1,3) 7.33.10-11

9 (p,q) 4.6310 1.8901 0.4377 (3,2,1) 2.51 10-19

10 (p,p) 2.4133 0.7431 2.0370 (1,3,2) 2.88. 10-10

11 (p,p) 6.3412 2.4086 0.4456 (-,- -) 3.82-10-20

12 (p,p) 2.4624 2.5545 0.7648 (2,1,3) 2.88 10-10

13 (p,r) 1.6597 -1.9288 1.0031 (-,-,-) 3.96 10 - 9

14 (p,q) 3.8592 0.9703 1.6856 (2,1,3) 3.13- 10-16

15 (p,q) 2.9308 -0.2548 1.4654 (3,1,2) 8.71 10-15

16 (q,r) 0.7244 -0.3808 1.0754 (2,1,3) 1.0910

17 (p,q or r) 1.7691 *1.6961 0.8527 (-,-,-) 2.5510 - 8

18 (q,r) 1.4558 -1.0516 1.3633 (1,3,2) 1.39. 10- 8

19 (pp or q) 1.1351 0.9076 0.1316 (2,1,3) 8.39.10 - 8

20 (p,r) 1.7985 -0.6672 1.2310 (-,-,-) 1.09 10-9

21 (p,p) 1.8366 1.8763 1.0929 (3,2,1) 4.65-10-8

22 (p,p) 2.6216 2.3006 0.8293 (1,3,2) 7.33 10-11

23 (p,p) 2.9433 1.9670 Q.6170 (2,3,1) 4.34. 10- 1 4

24 (p,p) 1.6562 -0.4739 0.2743 (3,1,2) 2.08 10-)3

25 (p,p) 2.3590 0.6951 0.5175 (3,1,2) 3.13 10- 1 6

26 (p,q) 2.1148 1.8883 0.3272 (2,3,1) 7.33. 10 11

27 (q,q) 0.8842 1.1139 0.3190 (1,3,2) 2.66 10-7

28 (p,p) 1.2671 0.2191 0.3805 (3,1,2) 2.88.10-10

29 (p,p) 2.6836 -0.1918 1.3614 (2,1,3) 8.71-10 - 1 5

30 (p,p) 2.130 0.3020 0.7664 (3,1,2) 3.13.10 - 1 5

31 (p,q) 0.6130 1.8514 2.5592 (1,2,3) 1.69. 10- 1 5

32 (p,r) 1.3106 -1.2606 2.4690 (1,2,3) 1.9. 10 -1 5

33 (pq) 0.1412 0.4580 -0.2010 (-,-,-) 1.36-10

34 (r,r) -0.8450 -1.4463 -0.1024 (-,-,-) 7.33- 1O11

35 (p,r) 3.0601 0.4474 2.6794 (2,1,3) 4.22-1012

36 (p,p) 1.6102 0.3132 0.4356 (3,1,2) 9.54.0- 13



TABLE 2

Estimates from the second experiment

A AA
Subject (f1 ff2 ) a01 a 2 a3

1 (p,p) -3.0963 -2.1347 1.8576

2 (p,p) 1.8510 1.8510 1.1574

3 (p,p) 1.4581 -2.3901 0.8868

4 (rP) -0.4136 2.5793 0

5 (q,p) 2.6174 0.9962 1.3898

6 (r~r) 1.8205 1.0398 3.3550

Vain (a) p) 1.5986 2.6369 2.3595

8 (p.p) 1.9963 3.7057 1.5508

9 (p,q) 0.9250 1.2809 .0.4629

10 (q,q) -2.3121 1.6188 0.4488

11 (qp) CO -C0 OP0

12 (q,p) 3.0755 0.9752 1.7471

(4, 
AA

f f ~2) a 1  a 4  a 3

13 (p,r) 4.4130 -1.5565 2.1746

14 (p,r) -0.7567 0.2670 0.1928

15 ~ q,r) -1.0317 -2.0087 3.0843

16 (q~p or r) 2.1162 +0.4851 1 .0253
17 (q,p) -2.3604 0.9555 1.7578

18 (p,p) -1.5368 0.5693 1.1138

19 (pep) 1.6156 1.5282 1.7371

20 (q,q) 3.0095 0.4570 00
Variant (b) 21 (q,p) -1 .3605 0.5470 1.7768

22(r,p) 0*-0 Go

23 (p,p) -1 .4268 3.0567 0

24 (p,q) 1.7389 0.6341 1.0820

25 (p,q) 1.3159 0.8184 1.8267

26 (p,p) -3.3090 0.5771 1.8202

27 (pep) 0.4711 0.5947 0

2S (p,q or r) -2.6879 t0.9802 4.0594

-1,2: Subject 11 decided strictly lexicographically with It 3 *2R

and subject 22 with W 1> '13> 13 9 4.


